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The primary resonance of a cantilever beam under state feedback control with a time
delay is investigated. By means of the asymptotic perturbation method, two slow-flow
equations on the amplitude and phase of the oscillator are obtained and external
excitation-response and frequency-response curves are shown. Vibration control and high-
amplitude response suppression can be performed with appropriate time delay and
feedback gains. Moreover, energy considerations are used in order to investigate existence
and characteristics of quasiperiodic modulated motion for the cantilever beam. It can be
demonstrated that appropriate choices for the feedback gains and the time delay can
exclude the possibility of modulated motion and reduce the amplitude peak of the primary
resonance. Analytical results are verified with numerical simulations.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Over the last few years, numerous papers have been dedicated to the control of resonantly
forced systems in various engineering fields. In passive vibration absorbers, a physical
device is connected to the primary structure, while in the case of active absorbers, the
device is replaced by a control system of sensors, actuators and filters. Active control of
mechanical and structural vibrations is superior to passive control, because the former is
more flexible in many aspects. For example, Oueni et al. [1] have considered a non-linear
active vibration absorber coupled with the plant through user-defined cubic non-
linearities. If the plant is excited at primary resonance and the absorber frequency is equal
to the plant natural frequency, they demonstrated that when the forcing amplitude
increases beyond a certain threshold, high-amplitude vibrations are suppressed because
the response amplitude of the plant remains constant, while the response amplitude of the
absorber increases. Oueni et al. [2] investigated the saturation phenomenon in devising an
active vibration suppression technique. A plant was coupled with a second order absorber
through a user-defined quadratic feedback control law. They demonstrated that, by tuning
the natural frequency of the absorber to one-half the excitation frequency, effective
vibration suppression is possible.

However, unavoidable time delays in controllers and actuators give rise to complicated
dynamics and can produce instability of the controlled systems. Moiola et al. [3]
considered Hopf bifurcations in non-linear feedback systems with time delay. Periodically
forced non-linear systems under delay control have been investigated by Plaut and Hsich
[4] in the case of non-linear structural vibrations with a time delay in damping. Hu et al. [5]
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considered primary resonance and the % subharmonic resonance of a forced Duffing

oscillator with time delay state feedback. Using the multiple scales method [6, 7], they
demonstrated that appropriate choices of the feedback gains and the time delay are
possible for better vibration control. Tsuda et al. [8] investigated a non-linear vibrating
system with some time delay and numerically detected chaotic behaviour.

Hy and Zh [9] considered controlled mechanical systems with time delays and, in
particular, primary resonance and subharmonic resonance of a harmonically forced
Duffing oscillator with time delay. Stabilization of periodic motion and applications to
active chassis of ground vehicles are discussed.

In previous papers, the response of a parametrically or externally excited van der Pol
oscillator has been investigated, and it has been shown that vibration control and
quasiperiodic motion suppression are possible for appropriate choices of time delay and
feedback gains [10, 11].

In this paper, a cantilever beam whose response is governed by a non-linear partial-
differential equation is considered. If we focus on a mode that is not involved in an
internal resonance with any of the other modes, then application of a single-mode
discretization scheme (see reference [12]) yields the non-linear difference—differential
equation

X(0) + 0* X (1) + aX (1) + bX3 (1) + X2 X (1) + dX () X (1)
—2fcos(Qt) + AX(t—T)+ BX(t—T) =0, (1)

where dot denotes differentiation with respect to time, w is the natural frequency, a is a
damping coefficient, b is the curvature non-linearity coefficient, ¢ and d are the inertia non-
linearities coefficients, f'is the forcing amplitude and the external excitation frequency is
Q=~w (primary resonance). 4 and B are the feedback gains and T is the time delay.

The paper is arranged as follows. In section 2, using the asymptotic perturbation (AP)
method [10, 11], a lowest order approximate solution of the non-linear oscillator (1) is
constructed. The AP method is based on large temporal rescalings and balancing of
harmonic terms with a simple iteration, and then can be considered as an attempt to link
the most useful characteristics of harmonic balance and multiple scale methods. Only a
slow time scale is used and harmonics are introduced for the fast time scale. However, for
the first order approximate solution, results are identical to those obtainable with the other
perturbation methods. Obviously, there may be other solutions, for example large-
amplitude quasiperiodic motion or chaotic behaviour, that the slow flow equations do not
describe.

It is demonstrated that the dynamics of the controlled and uncontrolled oscillators are
essentially the same when an appropriate redefinition of the damping coefficient and the
detuning parameter is accomplished.

In section 3a bifurcation analysis is performed and external excitation-response and
frequency-response curves are shown for the uncontrolled system, the controlled system
without time delay, and those with time delays corresponding to the minimum and
maximum value of the equivalent damping. It is found that the amplitude peak of the
primary resonance can be reduced by means of a correct choice of the time delay and the
feedback gains.

In section 4a global analysis of the slow-flow equations is performed and energy
considerations are used in order to study existence and characteristics of limit cycles of the
slow-flow equations. A limit cycle corresponds to a two-period modulated motion for the
externally excited cantilever beam. It is found that no limit cycles (corresponding to a two-
period modulated motion for the cantilever beam) exist for the slow-flow equations.
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However, the possibility of another type of quasiperiodic motion, characterized by the
oscillator phase which is unbounded and grows or diminishes indefinitely, can be
demonstrated.

The best choices of the feedback gains and the time delay, from the viewpoint of
vibration control, are found. The quasiperiodic motion is suppressed and the amplitude
peak of the primary resonance is reduced.

The paper closes with a discussion, along with some conclusions, in section 5.

2. THE AP METHOD AND THE LOWEST ORDER APPROXIMATE SOLUTION

In this section the case of primary resonance is examined and the detuning parameter o
is introduced,

o= Q+¢o, (2)

where ¢ is a bookkeeping device, which will be set equal to unity in the final analysis. Only
the study of small damping, weak non-linearity, weak feedback and soft excitation is
considered. Taking into account equation (2), equation (1) can be written in the following
form:

X)) +@°Xx(t) + a(zaQX(z) +ea? X (1) +aX () + bX3(1) + cX* ()X (1) + dX(t)Xz(t)X)
+e(AX(t—T)+ BX(t — T)) — 2¢f cos(Q1) = 0. (3)

Modifications induced by non-linearities and parametric resonance are best described by
the slow temporal scale

T=¢t, (4)

which is associated with modulations in the amplitude and the phase of the solution.
The approximate solution X () is sought in the form of a power series in the expansion
parameter e,
+00
X()= Y. e,z e)exp(—ine) (5)
nlodd)=—o0
with y, = |n| — 1. Note that ,(z,¢) = " ,(1,¢), because X (¢) is real. The functions y,,(z, )
depend on the parameter ¢ and it is supposed that their limit for ¢ — 0 exists and is finite.

The solution is then a Fourier expansion in which the coefficients vary slowly in time.
The lowest order terms correspond to the harmonic solution of the linear problem.
Evolution equations for the amplitudes of the harmonic terms are then derived by
substituting the expression of the solution into the original equations and projecting onto
each Fourier mode.

Substituting equation (5) into equation (3), considering the coefficients of the most
important Fourier mode (n = 1) and collecting terms of the same power of ¢ yields, to
order ¢,

L dy
2iQ ar
where = ;.

To analyze the combined effects of the non-linearity, the primary resonance and the
delay control, the polar form

+f =20y +iaQy + (3¢ — 3b — dQ*) Yy + (iBQ — A)pexp(iQT) =0,  (6)

¥ = pexp(it) (7)
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can be substituted into equation (6), in order to separate real and imaginary parts and to
obtain

dp a A . B f . _
54— (z—ﬁsm(QT) +§cos(QT)>p —Esm(l‘)) =0, (8)
ds B . A 3b 3Qc d@\ ;5 f B
pa+ (a+§sm(QT) JrECOS(.QT))p + (E_TJrT)p —Ecoslﬁ) =0. (9)
Defining
B\’ [4)’ B A
K= (E) +<E> ) COSQ =, SiNG =5 (10)
and substituting equation (10) into equations (8,9) yields
dp ya f . B
a+ (§+Kcos(qo+QT))p—Esm(9)_0, (11)
d3 . 3b 3Qc d@\ 5, f B
pa—k(a—i—Ksm(QT—i—(p))p—k(E—T—FT)p —ECOSS—O. (12)

Equations (11,12) represent a system of first order, autonomous, ordinary differential
equations, governing the amplitude and phase of the approximate solution expressed by

X (t) =2pcos(—Qt + 3) + O(¢). (13)

From equations (11, 12) it can be seen that the external excitation of the uncontrolled and
controlled oscillator are essentially the same when the detuning parameter ¢ and the
damping coefficient A are properly substituted using

06— 0+ Ksin(QT + ¢), a— a+2Kcos(QT + o). (14a, 14b)

On the contrary, the non-linear coefficients b, ¢ and d remain unchanged.

3. STABILITY ANALYSIS AND PRIMARY RESONANCE CONTROL
Setting
dp/dr=d9/dr =0 (15)

in equations (11, 12), the external excitation—response curve for the steady state solution
amplitude corresponding to a periodic response of the starting system can be found:

f= 2Qp\/(a + Ksin(p + QT) + ozpz)z—i-(g + K cos(¢p + QT))z, (16)

where
_3b 3Qc dQ
" 2 Ty
The stability properties of a constant solution are examined by applying the well-known
method of linearization. Small perturbations have been superposed on the steady state
solution and the resulting equations are then linearized. Subsequently, the eigenvalues of
the corresponding system of first order differential equations with constant coefficients
(the Jacobian matrix) are considered. A positive real root indicates an unstable solution,
whereas if the real parts of the eigenvalues are all negative then the steady state solution is
stable. When the real part of an eigenvalue is zero, bifurcation occurs. A change from
complex roots with negative real parts to complex roots with positive real parts could

(17)
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indicate the presence of a supercritical or subcritical Hopf bifurcation. The question of
which can actually occur depends on the non-linear terms [13, 14].
The eigenvalues of the Jacobian matrix satisfy the equation

P2+ Pl+0=0, (18)
where
P =2Kcos(¢ + QT) +a, (19)
a 2 va ’ 2 .
0= (5 + Kcos(QT + (p)) +(§ + 3op; + Kcos(QT + qo)) (2p5 + 0 + Ksin(QT + ¢)).
(20)
Then the eigenvalues are both negative if
P>0, 0>0. (21)

Results of stability analysis for a typical case are given in Figure 1, together with results
obtained by the numerical integration of equation (1), for the uncontrolled system (see
curve A), the controlled system without time delay (curve B), and those with time delays

08 [~ =

02 [~ =

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 1. External excitation (f)-response (p) curves for the uncontrolled system (curve A4), the controlled
system with no time delay (curve B), and those with time delay corresponding to the maximum (curve C) and
minimum (curve D) value of the equivalent damping. Boxes stand for the numerical solution. (K = 0-1, & = 0-2,
¢ =n/12, 6 = -01).
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corresponding to the maximum (curve C) and the minimum (curve D) equivalent damping,
according to equation (14b).

Numerical integration has been performed only for the stable steady state solution
curves, and the two curves without boxes correspond to unstable solutions. It can be seen
that an appropriate choice of the time delay can reduce the response amplitude and
perform an efficient vibration control (case D). Note, however that the time delay can
worsen the response (curve C as opposed to curve D in Figure 1) for some range of forcing.

As fincreases from zero, only one solution (corresponding to a periodic motion) exists,
which is stable in cases B and C and unstable in cases 4 and D. When freaches a critical
value, there are three possibilities for the curves 4 and D: two unstable solutions and one
stable large-amplitude solution.

On the other hand, in the uncontrolled system (curve 4), no steady state solution exists
for sufficiently small values of /', and it can be demonstrated (section 4) that in this case a
modulated motion can settle down. However, a correct choice of the time delay and the
feedback gains can suppress the quasiperiodic motion.

The frequency—response curve is given by

2
o= —Ksin(p + QT) — ap” + \/<L> _(ﬁ + K cos(p + QT))2 (22)
2Qp 2
and is shown in Figure 2 for typical cases. Also in this case, the response is strongly
influenced by the time delay. The controlled system with maximum equivalent damping
(case D) is not adequate and its performance is unsatisfactory, because the response value
is substantially unchanged, while for cases B (no time delay) and C (minimum equivalent
damping) the response is reduced with respect to the uncontrolled system (curve A).
A better choice for the time delay can be obtained if we consider equation (16) and set
dp/dT = 0. The time delay T, is then given by the condition

2
tan(QTy + ¢) = 2(“%""’0), (23)

The two delays T satisfying equation (23) correspond to a minimum and a maximum
value for the response. These time delays are not constant but depend on the response
value. Numerical integration confirms that the strategy given by the choice of the time
delay of equation (23) corresponding to a minimum value of the response is better than the
simple choice of the minimum equivalent damping shown in Figures 1 and 2.

4. SUPPRESSION OF THE QUASIPERIODIC MOTION

In many situations, it is desirable to suppress the quasiperiodic motion and reduce the
amplitude peak of the primary resonance. It can be demonstrated that this result can be
accomplished by appropriate choices of time delay and feedback gains.

Limit cycles of the slow-flow equations (11, 12) correspond to two-period quasiperiodic
solutions of the externally excited cantilever beam. A global analysis of the slow-flow
equations can be performed and sufficient conditions in order to exclude the existence of
limit cycles can be determined. The model system (11, 12) is rewritten in the form

R .
(cli_r — (a4 2Kcos(p + QT))R — é\/ﬁ sin 3 =0, (24)

dg . f )
—+ + Ksin(p + QT) + R — ———=cos3 | =0, 25
o+ (o4 Kinto + 01) 4 ar - L 5)
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Figure 2. Frequency (o)-response (p) curves for the uncontrolled system (curve A), the controlled system with
no time delay (curve B), and those with time delay corresponding to the minimum (curve C) and maximum
(curve D) value of the equivalent damping. (K =0-1, « =02, ¢ = n/12, f = 0-05).

where R = p?, in order to apply the energy-like function method, which is very useful for
the problem of the existence of closed orbits and modulated motion. It is well known that
there is no efficacious method to find this function for a given non-linear differential
equation, although sometimes one can work backwards.

For equations (24, 25), the energy-like function can be introduced as

E(R,9) = (0 + Ksin(QT + ¢))R + % R — é\/ﬁ cos § (26)

If a periodic solution of a generic period T exists, then, after one cycle, R and 9 return to
their starting values. Therefore, we find that AE=0 around any closed orbit.
On the other hand, a simple calculation yields

S cosd d—R +f—\/ﬁ sin ﬁ
OVR dt Q dt

dE .
e (a+Ksm(QT+¢)+ocR—2

(27)



248 A. MACCARI

and then, using equations (24) and (25),

dE d3
4 = ~(a+2Keos(QT + ¢))R (28)
From equation (28), it can be derived that, around any closed orbit,
T dE 2n
AE = / Edr = —(a+2Kcos(QT + ¢)) / Rd9. (29)
0 0

This integral is obviously non-zero, because the integrand function has a constant sign. A
contradiction is then obtained and it implies that there is no periodic orbit and no
corresponding two-period quasiperiodic motion for the cantilever beam, if 3 has to increase
monotonically from 0 to 2z, as implied by the argument associated with equation (29).

If this last condition is not satisfied, quasiperiodic motion is possible when equation (12)
cannot possess fixed points, i.e., when

|a—|—Ksin(qo+QT)|>>2pr+ o], (30)

As a consequence, if the initial conditions satisfy condition (30), then the motion becomes
a quasiperiodic modulated motion. In this case the approximate solution for system (11,
12) is

9 =39y + QT, (31)
p(t) = poexp(—A1)

+f [2(Qcosdo — Asindg)exp(—At) + 24sin(Qt + Jo) — 2Qcos(Qt + )]
4Q(A% + Q%)

o (32)

where
O= - Ksin(QT + ), A :%+Kcos(QT+¢). (33,34)

If the coefficient A4 > 0, then the amplitude p is slowly modulated and the asymptotic
solution is

f [Asin(Qr + 89) — Qcos(Qt + %)
2042 + &)

corresponding to a quasiperiodic motion for the cantilever beam. The above illustrated
analytical considerations have been checked by means of a numerical integration of
equations (11, 12).

From the viewpoint of vibration control, it can be seen that for the elimination of the
two-period quasiperiodic motion, the feedback gains must be chosen in such a way that
the left-hand side of equation (30) is small enough, in order to obtain fixed points for
equation (25).

The best choice is obviously

p(t) = ; (35)

o

K=—F—F—"—+H 36

sin(p + QT) (36)

and from equations (24, 25) the steady state solutions can be easily obtained from the
external excitation—response curve:

f= pQ\/4oc2p4 + (a+ 2K cos(p + QT))? (37)

and in this case the cantilever beam settles down into a periodic motion.
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In order to reduce the amplitude peak, the condition dp/d7T = 0 must be satisfied and
from equation (37) it can be found that
sin(QTy + ¢) = 0. (38)

The delay T corresponds to a minimum or a maximum value for the response, if the
second derivative,

(12_/) B 2pKQ%cos(QTy + ¢)(a + 2Kcos(QTy + ¢))
d7?(_p, 1202p* + (a + 2Kcos(QTy + ¢))?

(39)

is, respectively, >0 or <0.
As a consequence, the feedback gains and the time delays must be chosen in such a way
that
(2nm — @)
7, === (40)
where n=0,+1,+2,.... However, this choice is impossible, because it corresponds to a
singularity in equation (36). A successful strategy is to choose the time delay near to the
value in equation (40) in such a way that K does not increase excessively.

In Figure 3 the response amplitude of the approximate solution with no time delay
(curve A) and with a time delay equal (case B) or near (case C) to the value in equation (40)
has been shown. The parameter K is given by the condition (36) for cases 4 and C, while in
case B it is equal to the value for case 4. Comparison with the numerical solution has also
been performed. The response is strongly suppressed when the time delay is near to the
value in equation (40) and K is given by equation (36) (curve C).

In conclusion, the optimal choices for the time delay and the feedback gains are given by
conditions (36) and (40), because the two-period quasiperiodic motion disappears and the
peak amplitude is at its minimum value.

The strategy control can be summarized in the following two steps:

1. if the system response is simply periodic (condition (30) is not satisfied), the response
amplitude can be reduced by choice (22) for the time delay, which is not dependent on
the feedback gains;

2. if condition (30) is satisfied, a two-period quasiperiodic motion settles down and the
only way to avoid it is to choose the feedback gains and the time delay in such a way as
to satisfy condition (36) exactly and condition (40) approximately.

5. CONCLUSIONS

The state feedback control with a time delay has been studied for the primary resonance
of a cantilever beam. By means of the asymptotic perturbation method and for small
feedback gains, two slow-flow equations, governing the amplitude and phase of the
approximate time response of the oscillator, have been derived. It has been found that the
primary resonance of the oscillator with delay state feedback is qualitatively the same as
that of the uncontrolled oscillator if the damping coefficient and the detuning parameter
are redefined through the relations (14).

The external excitation—response and frequency-response curves have been compared
with numerical solutions. Appropriate choices for the feedback gains and the time delay
have been found in order to reduce the amplitude peak.

Moreover, the existence of quasiperiodic motion has been investigated. Using energy
considerations, it has been demonstrated that no limit cycles (corresponding to a two-
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Figure 3. Parametric excitation (f)-response (p) curves for the controlled system with no time delay (curve 4)
and with time delay 7' = —n/3, (curve B) and T = —0-967/3 (curve C). The feedback gain K is given by equation
(43) for the cases 4 (K =0-023) and C (K = 0-478), while in the case B is K = 0-023. Boxes stand for the
numerical solution. (¢ = —0-02, & = 0-1, ¢ = 1/3).

period modulated motion for the cantilever beam) exist for the slow-flow equations.
Subsequently, the possibility of another type of quasiperiodic motion, in which the
oscillator phase is unbounded, has been discovered.

In conclusion, appropriate choices for the time delay and the feedback gains can
enhance the control performance, reduce the amplitude peak and suppress the
quasiperiodic motion.
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